Estimation of composition of quinoa
The paper “Estimation of composition of quinoa (Chenopodium quinoa Willd.) grains by Near-Infrared Transmission spectroscopy” authored by Christian Encina-Zelada, Vasco Cadavez, Jorge Pereda, Luz Gómez-Pando, Bettit Salvá-Ruíz, José A. Teixeira, Martha Ibañez, Kristian H. Liland and Ursula Gonzales-Barrona has been published in LWT – Food Science and Technology.
Abstract
The aim of this study was to develop robust chemometric models for the routine determination of dietary constituents of quinoa (Chenopodium quinoa Willd.) using Near-Infrared Transmission (NIT) spectroscopy. Spectra of quinoa grains of 77 cultivars were acquired while dietary constituents were determined by reference methods. Spectra were subjected to multiplicative scatter correction (MSC) or extended multiplicative signal correction (EMSC), and were (or not) treated by Savitzky-Golay (SG) filters. Latent variables were extracted by partial least squares regression (PLSR) or canonical powered partial least squares (CPPLS) algorithms, and the accuracy and predictability of all modelling strategies were compared. Smoothing the spectra improved the accuracy of the models for fat (root mean square error of cross-validation, RMSECV: 0.319–0.327%), ashes (RMSECV: 0.224–0.230%), and particularly for protein (RMSECV: 0.518–0.564%) and carbohydrates (RMSECV: 0.542–0.559%), while enhancing the prediction performance, particularly, for fat (root mean square error of prediction, RMSEP: 0.248–0.335%) and ashes (RMSEP: 0.137–0.191%). Although the highest predictability was achieved for ashes (SG-filtered EMSC/PLSR: bootstrapped 90% confidence interval for RMSEP: [0.376–0.512]) and carbohydrates (SG-filtered MSC/CPPLS: 90% CI RMSEP: [0.651–0.901]), precision was acceptable for protein (SG-filtered MSC/CPPLS: 90% CI RMSEP: [0.650–0.852]), fat (SG-filtered EMSC/CPPLS: 90% CI RMSEP: [0.478–0.654]) and moisture (non-filtered EMSC/PLSR: 90% CI RMSEP: [0.658–0.833]).
http://dx.doi.org/10.1016/j.lwt.2017.01.026